Scientific

MK5 Microarray Data


Affected Genes - Ontology Breakdown - Gene Enrichment - Proteome Analysis

These are the micro-array results of a differential gene expression microarray experiments and the subsequent analysis steps performed on them. The up/down- regulation ratio was obtained by measuring WT cells against MK5 activated cells. See material and methods for technical information as well as the data usage policy.

MK5 Proteome Network Type I Analysis

Type 1 network in which we propagated the absolute log regulation ratio abs(log(r/g)). We used the filtered lowest boundary of the confidence interval for the microarray measurement based and used the high confidence interaction map. Because type-I networks tend to favour highly connected proteins we tested a normalisation scheme in which we would run the network once with real values (the measured column) and once with simulated values where each measured point is set to 1 instead of the actual signal (the expected column). Afterwards we divided the measured value by the expected value. This normalisation scheme works to a certain extend but will lead to a variance that is directly related to the connectivity of each protein. In the end we dropped the use of Type-I networks due to the many technical problems they pose.


Navigation/Query Panel:
Click on the attribute name to hide/unhide it. The green arrows can be used to shift columns left/right. Exact word match is written as =..., regular expressions can be matched with ~.... To select all values larger or equal than use >.... This would be <... for values smaller or equal than. To select all values within a specific range use [...,...].
Gene description final expected Hugo Rank measured
Results: HTML CSV LaTeX Showing element 1 to 50 of 3206 in total
description  :
final
expected
Hugo
Rank
measured
0.000219976 0.7865 no value 3206 0.000173011
2.59675 C1orf166 3205 0.000571223
0.036862138 0.104721 CHMP2B 3199 0.00386024
0.036862209 0.85608 CHMP4B 3196 0.031557
0.036862264 0.649583 CHMP4C 3194 0.0239451
0.037314982 1.34852 FIBCD1 3191 0.05032
0.04678744 1.01816 CCDC104 3185 0.0476371
0.049410892 1.32794 PYCRL 3184 0.0656147
0.055311655 0.333333 C6orf130 3176 0.0184372
NIPA2 3175
0.06471012 11.3823 C5orf33 3167 0.73655
0.065381433 1.00804 MAGEB18 3154 0.0659071
0.065381739 25.135 NSMCE4A 3139 1.64337
0.065381917 1.01213 MAGEB10 3136 0.066175
0.068499242 1.29368 CC2D1A 3129 0.0886161
0.088193051 0.634694 C1orf14 3119 0.0559756
0.097635809 0.498014 METTL2A 3091 0.048624
TM4SF19 3089
0.097635972 0.397415 FAM20A 3087 0.038802
0.103197055 0.353982 C1orf156 3070 0.0365299
0.103197093 0.517345 no value 3069 0.0533885
0.117651073 1.62653 UBE2E2 3032 0.191363
0.117651086 1.09557 PTCD1 3031 0.128895
0.121833673 0.266776 FRY 3013 0.0325023
0.125273906 1.08705 SEPT11 3007 0.136179
0.12785257 1.33704 C1orf164 3002 0.170944
0.135336712 0.155504 HS3ST4 2990 0.0210454
0.138195 1 C9orf68 2987 0.138195
0.139559153 0.285269 MTERFD1 2981 0.0398119
0.141551046 0.735452 RIBC2 2970 0.104104
0.146165148 0.689453 FRMPD4 2959 0.100774
0.152530807 0.679961 SLC30A9 2945 0.103715
0.157068631 0.682084 VPS37B 2938 0.107134
0.157207261 0.529029 VPS37C 2936 0.0831672
0.167353852 0.704322 NUP93 2925 0.117871
0.174141808 0.241467 ANKS6 2911 0.0420495
0.174142027 0.187331 SAP30L 2908 0.0326222
0.174142084 0.332958 TMEM55A 2907 0.057982
0.174142329 0.139564 PLEKHG2 2905 0.024304
0.175384941 0.822334 LASS5 2893 0.144225
0.178353445 0.285736 SPTY2D1 2890 0.050962
0.179909858 0.515188 C9orf95 2889 0.0926874
0.184481531 0.278146 CXorf56 2880 0.0513128
0.188897649 0.196598 no value 2872 0.0371369
0.188940403 0.163279 ORAI2 2867 0.03085
0.188941031 0.196899 ORAI3 2863 0.0372023
0.188941052 0.162737 ORAI1 2860 0.0307477
0.193516584 0.849984 ZNF496 2824 0.164486
0.193522393 0.852537 ZNF449 2822 0.164985
0.197047403 0.616542 C9orf23 2812 0.121488

Legend:
- Rank is the rank after comparing the two networks
- Gene is the ensembl human gene identifier measured by 1 or more probes on the microarray
- Hugo is the bloody hugo identifier as demanded by the BMC Bioinformatics idiots

- http://analysis.yellowcouch.org/