Scientific

MK5 Microarray Data


Affected Genes - Ontology Breakdown - Gene Enrichment - Proteome Analysis

These are the micro-array results of a differential gene expression microarray experiments and the subsequent analysis steps performed on them. The up/down- regulation ratio was obtained by measuring WT cells against MK5 activated cells. See material and methods for technical information as well as the data usage policy.

MK5 Proteome Network Type I Analysis

Type 1 network in which we propagated the absolute log regulation ratio abs(log(r/g)). We used the filtered lowest boundary of the confidence interval for the microarray measurement based and used the high confidence interaction map. Because type-I networks tend to favour highly connected proteins we tested a normalisation scheme in which we would run the network once with real values (the measured column) and once with simulated values where each measured point is set to 1 instead of the actual signal (the expected column). Afterwards we divided the measured value by the expected value. This normalisation scheme works to a certain extend but will lead to a variance that is directly related to the connectivity of each protein. In the end we dropped the use of Type-I networks due to the many technical problems they pose.


Navigation/Query Panel:
Click on the attribute name to hide/unhide it. The green arrows can be used to shift columns left/right. Exact word match is written as =..., regular expressions can be matched with ~.... To select all values larger or equal than use >.... This would be <... for values smaller or equal than. To select all values within a specific range use [...,...].
description final Rank expected Gene Hugo measured
Results: HTML CSV LaTeX Showing element 1 to 50 of 3206 in total
description  :
final
Rank
expected
Hugo
measured
0.000219976 3206 0.7865 no value 0.000173011
3205 2.59675 C1orf166 0.000571223
0.036862138 3199 0.104721 CHMP2B 0.00386024
0.036862209 3196 0.85608 CHMP4B 0.031557
0.036862264 3194 0.649583 CHMP4C 0.0239451
0.037314982 3191 1.34852 FIBCD1 0.05032
0.04678744 3185 1.01816 CCDC104 0.0476371
0.049410892 3184 1.32794 PYCRL 0.0656147
0.055311655 3175 0.333333 NIPA2 0.0184372
3176 C6orf130
0.06471012 3167 11.3823 C5orf33 0.73655
0.065381433 3154 1.00804 MAGEB18 0.0659071
0.065381739 3139 25.135 NSMCE4A 1.64337
0.065381917 3136 1.01213 MAGEB10 0.066175
0.068499242 3129 1.29368 CC2D1A 0.0886161
0.088193051 3119 0.634694 C1orf14 0.0559756
0.097635809 3089 0.498014 TM4SF19 0.048624
3091 METTL2A
0.097635972 3087 0.397415 FAM20A 0.038802
0.103197055 3070 0.353982 C1orf156 0.0365299
0.103197093 3069 0.517345 no value 0.0533885
0.117651073 3032 1.62653 UBE2E2 0.191363
0.117651086 3031 1.09557 PTCD1 0.128895
0.121833673 3013 0.266776 FRY 0.0325023
0.125273906 3007 1.08705 SEPT11 0.136179
0.12785257 3002 1.33704 C1orf164 0.170944
0.135336712 2990 0.155504 HS3ST4 0.0210454
0.138195 2987 1 C9orf68 0.138195
0.139559153 2981 0.285269 MTERFD1 0.0398119
0.141551046 2970 0.735452 RIBC2 0.104104
0.146165148 2959 0.689453 FRMPD4 0.100774
0.152530807 2945 0.679961 SLC30A9 0.103715
0.157068631 2938 0.682084 VPS37B 0.107134
0.157207261 2936 0.529029 VPS37C 0.0831672
0.167353852 2925 0.704322 NUP93 0.117871
0.174141808 2911 0.241467 ANKS6 0.0420495
0.174142027 2908 0.187331 SAP30L 0.0326222
0.174142084 2907 0.332958 TMEM55A 0.057982
0.174142329 2905 0.139564 PLEKHG2 0.024304
0.175384941 2893 0.822334 LASS5 0.144225
0.178353445 2890 0.285736 SPTY2D1 0.050962
0.179909858 2889 0.515188 C9orf95 0.0926874
0.184481531 2880 0.278146 CXorf56 0.0513128
0.188897649 2872 0.196598 no value 0.0371369
0.188940403 2867 0.163279 ORAI2 0.03085
0.188941031 2863 0.196899 ORAI3 0.0372023
0.188941052 2860 0.162737 ORAI1 0.0307477
0.193516584 2824 0.849984 ZNF496 0.164486
0.193522393 2822 0.852537 ZNF449 0.164985
0.197047403 2812 0.616542 C9orf23 0.121488

Legend:
- Rank is the rank after comparing the two networks
- Gene is the ensembl human gene identifier measured by 1 or more probes on the microarray
- Hugo is the bloody hugo identifier as demanded by the BMC Bioinformatics idiots

- http://analysis.yellowcouch.org/