Scientific

MK5 Microarray Data


Affected Genes - Ontology Breakdown - Gene Enrichment - Proteome Analysis

These are the micro-array results of a differential gene expression microarray experiments and the subsequent analysis steps performed on them. The up/down- regulation ratio was obtained by measuring WT cells against MK5 activated cells. See material and methods for technical information as well as the data usage policy.

MK5 Proteome Network Type I Analysis

Type 1 network in which we propagated the absolute log regulation ratio abs(log(r/g)). We used the filtered lowest boundary of the confidence interval for the microarray measurement based and used the high confidence interaction map. Because type-I networks tend to favour highly connected proteins we tested a normalisation scheme in which we would run the network once with real values (the measured column) and once with simulated values where each measured point is set to 1 instead of the actual signal (the expected column). Afterwards we divided the measured value by the expected value. This normalisation scheme works to a certain extend but will lead to a variance that is directly related to the connectivity of each protein. In the end we dropped the use of Type-I networks due to the many technical problems they pose.


Navigation/Query Panel:
Click on the attribute name to hide/unhide it. The green arrows can be used to shift columns left/right. Exact word match is written as =..., regular expressions can be matched with ~.... To select all values larger or equal than use >.... This would be <... for values smaller or equal than. To select all values within a specific range use [...,...].
description final measured Hugo Rank expected Gene
Results: HTML CSV LaTeX Showing element 1 to 50 of 3206 in total
description  :
final
measured
Hugo
Rank
expected
0.000219976 0.000173011 no value 3206 0.7865
0.000571223 C1orf166 3205 2.59675
0.036862138 0.00386024 CHMP2B 3199 0.104721
0.036862209 0.031557 CHMP4B 3196 0.85608
0.036862264 0.0239451 CHMP4C 3194 0.649583
0.037314982 0.05032 FIBCD1 3191 1.34852
0.04678744 0.0476371 CCDC104 3185 1.01816
0.049410892 0.0656147 PYCRL 3184 1.32794
0.055311655 0.0184372 C6orf130 3176 0.333333
NIPA2 3175
0.06471012 0.73655 C5orf33 3167 11.3823
0.065381433 0.0659071 MAGEB18 3154 1.00804
0.065381739 1.64337 NSMCE4A 3139 25.135
0.065381917 0.066175 MAGEB10 3136 1.01213
0.068499242 0.0886161 CC2D1A 3129 1.29368
0.088193051 0.0559756 C1orf14 3119 0.634694
0.097635809 0.048624 METTL2A 3091 0.498014
TM4SF19 3089
0.097635972 0.038802 FAM20A 3087 0.397415
0.103197055 0.0365299 C1orf156 3070 0.353982
0.103197093 0.0533885 no value 3069 0.517345
0.117651073 0.191363 UBE2E2 3032 1.62653
0.117651086 0.128895 PTCD1 3031 1.09557
0.121833673 0.0325023 FRY 3013 0.266776
0.125273906 0.136179 SEPT11 3007 1.08705
0.12785257 0.170944 C1orf164 3002 1.33704
0.135336712 0.0210454 HS3ST4 2990 0.155504
0.138195 0.138195 C9orf68 2987 1
0.139559153 0.0398119 MTERFD1 2981 0.285269
0.141551046 0.104104 RIBC2 2970 0.735452
0.146165148 0.100774 FRMPD4 2959 0.689453
0.152530807 0.103715 SLC30A9 2945 0.679961
0.157068631 0.107134 VPS37B 2938 0.682084
0.157207261 0.0831672 VPS37C 2936 0.529029
0.167353852 0.117871 NUP93 2925 0.704322
0.174141808 0.0420495 ANKS6 2911 0.241467
0.174142027 0.0326222 SAP30L 2908 0.187331
0.174142084 0.057982 TMEM55A 2907 0.332958
0.174142329 0.024304 PLEKHG2 2905 0.139564
0.175384941 0.144225 LASS5 2893 0.822334
0.178353445 0.050962 SPTY2D1 2890 0.285736
0.179909858 0.0926874 C9orf95 2889 0.515188
0.184481531 0.0513128 CXorf56 2880 0.278146
0.188897649 0.0371369 no value 2872 0.196598
0.188940403 0.03085 ORAI2 2867 0.163279
0.188941031 0.0372023 ORAI3 2863 0.196899
0.188941052 0.0307477 ORAI1 2860 0.162737
0.193516584 0.164486 ZNF496 2824 0.849984
0.193522393 0.164985 ZNF449 2822 0.852537
0.197047403 0.121488 C9orf23 2812 0.616542

Legend:
- Rank is the rank after comparing the two networks
- Gene is the ensembl human gene identifier measured by 1 or more probes on the microarray
- Hugo is the bloody hugo identifier as demanded by the BMC Bioinformatics idiots

- http://analysis.yellowcouch.org/