Scientific

MK5 Microarray Data


Affected Genes - Ontology Breakdown - Gene Enrichment - Proteome Analysis

These are the micro-array results of a differential gene expression microarray experiments and the subsequent analysis steps performed on them. The up/down- regulation ratio was obtained by measuring WT cells against MK5 activated cells. See material and methods for technical information as well as the data usage policy.

MK5 Proteome Network Type I Analysis

Type 1 network in which we propagated the absolute log regulation ratio abs(log(r/g)). We used the filtered lowest boundary of the confidence interval for the microarray measurement based and used the high confidence interaction map. Because type-I networks tend to favour highly connected proteins we tested a normalisation scheme in which we would run the network once with real values (the measured column) and once with simulated values where each measured point is set to 1 instead of the actual signal (the expected column). Afterwards we divided the measured value by the expected value. This normalisation scheme works to a certain extend but will lead to a variance that is directly related to the connectivity of each protein. In the end we dropped the use of Type-I networks due to the many technical problems they pose.


Navigation/Query Panel:
Click on the attribute name to hide/unhide it. The green arrows can be used to shift columns left/right. Exact word match is written as =..., regular expressions can be matched with ~.... To select all values larger or equal than use >.... This would be <... for values smaller or equal than. To select all values within a specific range use [...,...].
description Gene final measured Rank expected Hugo
Results: HTML CSV LaTeX Showing element 1 to 50 of 3206 in total
description  :
final
measured
Rank
expected
Hugo
0.000219976 0.000173011 3206 0.7865 no value
0.000571223 3205 2.59675 C1orf166
0.036862138 0.00386024 3199 0.104721 CHMP2B
0.036862209 0.031557 3196 0.85608 CHMP4B
0.036862264 0.0239451 3194 0.649583 CHMP4C
0.037314982 0.05032 3191 1.34852 FIBCD1
0.04678744 0.0476371 3185 1.01816 CCDC104
0.049410892 0.0656147 3184 1.32794 PYCRL
0.055311655 0.0184372 3175 0.333333 NIPA2
3176 C6orf130
0.06471012 0.73655 3167 11.3823 C5orf33
0.065381433 0.0659071 3154 1.00804 MAGEB18
0.065381739 1.64337 3139 25.135 NSMCE4A
0.065381917 0.066175 3136 1.01213 MAGEB10
0.068499242 0.0886161 3129 1.29368 CC2D1A
0.088193051 0.0559756 3119 0.634694 C1orf14
0.097635809 0.048624 3089 0.498014 TM4SF19
3091 METTL2A
0.097635972 0.038802 3087 0.397415 FAM20A
0.103197055 0.0365299 3070 0.353982 C1orf156
0.103197093 0.0533885 3069 0.517345 no value
0.117651073 0.191363 3032 1.62653 UBE2E2
0.117651086 0.128895 3031 1.09557 PTCD1
0.121833673 0.0325023 3013 0.266776 FRY
0.125273906 0.136179 3007 1.08705 SEPT11
0.12785257 0.170944 3002 1.33704 C1orf164
0.135336712 0.0210454 2990 0.155504 HS3ST4
0.138195 0.138195 2987 1 C9orf68
0.139559153 0.0398119 2981 0.285269 MTERFD1
0.141551046 0.104104 2970 0.735452 RIBC2
0.146165148 0.100774 2959 0.689453 FRMPD4
0.152530807 0.103715 2945 0.679961 SLC30A9
0.157068631 0.107134 2938 0.682084 VPS37B
0.157207261 0.0831672 2936 0.529029 VPS37C
0.167353852 0.117871 2925 0.704322 NUP93
0.174141808 0.0420495 2911 0.241467 ANKS6
0.174142027 0.0326222 2908 0.187331 SAP30L
0.174142084 0.057982 2907 0.332958 TMEM55A
0.174142329 0.024304 2905 0.139564 PLEKHG2
0.175384941 0.144225 2893 0.822334 LASS5
0.178353445 0.050962 2890 0.285736 SPTY2D1
0.179909858 0.0926874 2889 0.515188 C9orf95
0.184481531 0.0513128 2880 0.278146 CXorf56
0.188897649 0.0371369 2872 0.196598 no value
0.188940403 0.03085 2867 0.163279 ORAI2
0.188941031 0.0372023 2863 0.196899 ORAI3
0.188941052 0.0307477 2860 0.162737 ORAI1
0.193516584 0.164486 2824 0.849984 ZNF496
0.193522393 0.164985 2822 0.852537 ZNF449
0.197047403 0.121488 2812 0.616542 C9orf23

Legend:
- Rank is the rank after comparing the two networks
- Gene is the ensembl human gene identifier measured by 1 or more probes on the microarray
- Hugo is the bloody hugo identifier as demanded by the BMC Bioinformatics idiots

- http://analysis.yellowcouch.org/