Scientific

MK5 Microarray Data


Affected Genes - Ontology Breakdown - Gene Enrichment - Proteome Analysis

These are the micro-array results of a differential gene expression microarray experiments and the subsequent analysis steps performed on them. The up/down- regulation ratio was obtained by measuring WT cells against MK5 activated cells. See material and methods for technical information as well as the data usage policy.

MK5 Proteome Network Type I Analysis

Type 1 network in which we propagated the absolute log regulation ratio abs(log(r/g)). We used the filtered lowest boundary of the confidence interval for the microarray measurement based and used the high confidence interaction map. Because type-I networks tend to favour highly connected proteins we tested a normalisation scheme in which we would run the network once with real values (the measured column) and once with simulated values where each measured point is set to 1 instead of the actual signal (the expected column). Afterwards we divided the measured value by the expected value. This normalisation scheme works to a certain extend but will lead to a variance that is directly related to the connectivity of each protein. In the end we dropped the use of Type-I networks due to the many technical problems they pose.


Navigation/Query Panel:
Click on the attribute name to hide/unhide it. The green arrows can be used to shift columns left/right. Exact word match is written as =..., regular expressions can be matched with ~.... To select all values larger or equal than use >.... This would be <... for values smaller or equal than. To select all values within a specific range use [...,...].
description Rank Gene measured expected Hugo final
Results: HTML CSV LaTeX Showing element 401 to 450 of 3206 in total
description  :
Rank
measured
expected
Hugo
final
2809 0.124033 0.627474 ZBTB45 0.197670342
2811 0.0949008 0.481532 RPP25 0.197080983
2812 0.121488 0.616542 C9orf23 0.197047403
2822 0.164985 0.852537 ZNF449 0.193522393
2824 0.164486 0.849984 ZNF496 0.193516584
2860 0.0307477 0.162737 ORAI1 0.188941052
2863 0.0372023 0.196899 ORAI3 0.188941031
2867 0.03085 0.163279 ORAI2 0.188940403
2872 0.0371369 0.196598 no value 0.188897649
2880 0.0513128 0.278146 CXorf56 0.184481531
2889 0.0926874 0.515188 C9orf95 0.179909858
2890 0.050962 0.285736 SPTY2D1 0.178353445
2893 0.144225 0.822334 LASS5 0.175384941
2905 0.024304 0.139564 PLEKHG2 0.174142329
2907 0.057982 0.332958 TMEM55A 0.174142084
2908 0.0326222 0.187331 SAP30L 0.174142027
2911 0.0420495 0.241467 ANKS6 0.174141808
2925 0.117871 0.704322 NUP93 0.167353852
2936 0.0831672 0.529029 VPS37C 0.157207261
2938 0.107134 0.682084 VPS37B 0.157068631
2945 0.103715 0.679961 SLC30A9 0.152530807
2959 0.100774 0.689453 FRMPD4 0.146165148
2970 0.104104 0.735452 RIBC2 0.141551046
2981 0.0398119 0.285269 MTERFD1 0.139559153
2987 0.138195 1 C9orf68 0.138195
2990 0.0210454 0.155504 HS3ST4 0.135336712
3002 0.170944 1.33704 C1orf164 0.12785257
3007 0.136179 1.08705 SEPT11 0.125273906
3013 0.0325023 0.266776 FRY 0.121833673
3031 0.128895 1.09557 PTCD1 0.117651086
3032 0.191363 1.62653 UBE2E2 0.117651073
3069 0.0533885 0.517345 no value 0.103197093
3070 0.0365299 0.353982 C1orf156 0.103197055
3087 0.038802 0.397415 FAM20A 0.097635972
3089 0.048624 0.498014 TM4SF19 0.097635809
3091 METTL2A
3119 0.0559756 0.634694 C1orf14 0.088193051
3129 0.0886161 1.29368 CC2D1A 0.068499242
3136 0.066175 1.01213 MAGEB10 0.065381917
3139 1.64337 25.135 NSMCE4A 0.065381739
3154 0.0659071 1.00804 MAGEB18 0.065381433
3167 0.73655 11.3823 C5orf33 0.06471012
3175 0.0184372 0.333333 NIPA2 0.055311655
3176 C6orf130
3184 0.0656147 1.32794 PYCRL 0.049410892
3185 0.0476371 1.01816 CCDC104 0.04678744
3191 0.05032 1.34852 FIBCD1 0.037314982
3194 0.0239451 0.649583 CHMP4C 0.036862264
3196 0.031557 0.85608 CHMP4B 0.036862209
3199 0.00386024 0.104721 CHMP2B 0.036862138

Legend:
- Rank is the rank after comparing the two networks
- Gene is the ensembl human gene identifier measured by 1 or more probes on the microarray
- Hugo is the bloody hugo identifier as demanded by the BMC Bioinformatics idiots

- http://analysis.yellowcouch.org/