Scientific

MK5 Microarray Data


Affected Genes - Ontology Breakdown - Gene Enrichment - Proteome Analysis

These are the micro-array results of a differential gene expression microarray experiments and the subsequent analysis steps performed on them. The up/down- regulation ratio was obtained by measuring WT cells against MK5 activated cells. See material and methods for technical information as well as the data usage policy.

MK5 Proteome Network Type I Analysis

Type 1 network in which we propagated the absolute log regulation ratio abs(log(r/g)). We used the filtered lowest boundary of the confidence interval for the microarray measurement based and used the high confidence interaction map. Because type-I networks tend to favour highly connected proteins we tested a normalisation scheme in which we would run the network once with real values (the measured column) and once with simulated values where each measured point is set to 1 instead of the actual signal (the expected column). Afterwards we divided the measured value by the expected value. This normalisation scheme works to a certain extend but will lead to a variance that is directly related to the connectivity of each protein. In the end we dropped the use of Type-I networks due to the many technical problems they pose.


Navigation/Query Panel:
Click on the attribute name to hide/unhide it. The green arrows can be used to shift columns left/right. Exact word match is written as =..., regular expressions can be matched with ~.... To select all values larger or equal than use >.... This would be <... for values smaller or equal than. To select all values within a specific range use [...,...].
Gene description Rank measured expected final Hugo
Results: HTML CSV LaTeX Showing element 302 to 351 of 3206 in total
description  :
Rank
measured
expected
final
Hugo
2140 0.0510195 0.223943 0.227823598 KIAA1109
2141 0.0218584 0.0959445 0.227823377 ZC3H12C
2143 0.0282774 0.12412 0.227823074 ZC3H12A
2157 0.0141571 0.0622988 0.227245148 BPIL2
2165 0.299286 1.31793 0.227087933 no value
2188 0.19122 0.84475 0.226362829 C12orf65
2207 0.098654 0.437657 0.225413966 SLC47A2
2209 0.128228 0.569623 0.225110292 SLC47A1
2213 0.0434449 0.193087 0.225001683 LRRC48
2222 0.0563344 0.250658 0.224746068 MSRB2
2234 0.0563373 0.251434 0.224063969 SPATA20
2238 0.221267 0.988036 0.223946293 no value
2241 0.0291377 0.130208 0.223778109 KIAA1033
2250 0.0929892 0.41666 0.223177651 ZCCHC7
2254 0.0309189 0.138615 0.223055946 C7orf24
2257 0.086859 0.389405 0.223055688 no value
2261 0.0308958 0.138512 0.223055042 ATPAF1
2275 0.294007 1.32025 0.2226904 no value
2279 0.152886 0.687157 0.222490639 GDPD3
2283 0.188344 0.846836 0.222409061 GDPD1
2286 0.147358 0.662751 0.222342931 MAP3K7IP3
2306 0.25396 1.14298 0.222191114 no value
2310 0.208679 0.939792 0.22204807 DCAKD
2336 0.0295892 0.133775 0.22118632 C1orf50
2337 0.256113 1.15814 0.221141658 D2HGDH
2347 0.1385 0.628094 0.220508395 no value
2349 0.0640044 0.290417 0.220387925 PIH1D2
2350 0.0498274 0.22609 0.220387456 SLIT1
2374 0.0516003 0.234495 0.220048615 TSEN2
2377 0.271141 1.23303 0.219898137 RIC8A
2378 0.223975 1.01863 0.219878661 RIC8B
2381 0.206722 0.940952 0.219694522 USP52
2385 0.0280218 0.127549 0.219694392 C14orf153
2387 URM1
2395 0.0914148 0.416755 0.219349018 MARS2
2400 0.100955 0.460869 0.219053571 NSUN2
2408 0.184877 0.845209 0.218735248 APIP
2409 0.112482 0.514239 0.218734868 no value
2410 0.0244129 0.111754 0.218452136 VPS8
2413 0.030828500000000002 0.141189 0.218349163 no value
2432 0.098396 0.452567 0.217417532 THNSL1
2433 0.192282 0.884993 0.217269515 IMMP1L
2436 0.0346049 0.159272 0.2172692 SETD3
2444 0.116413 0.536227 0.217096491 C7orf20
2445 0.0314703 0.14496 0.21709644 UBL4B
2450 0.175357 0.808504 0.216890702 HDHD3
2454 0.278378 1.28369 0.216857653 REXO1
2458 0.565608 2.60988 0.21671801 OXSM
2459 0.027214 0.125575 0.21671511 C20orf80
2461 0.0337015 0.155511 0.216714573 RPAP1

Legend:
- Rank is the rank after comparing the two networks
- Gene is the ensembl human gene identifier measured by 1 or more probes on the microarray
- Hugo is the bloody hugo identifier as demanded by the BMC Bioinformatics idiots

- http://analysis.yellowcouch.org/